Кулинария

Как находится внутренняя энергия газа. SA. Внутренняя энергия. Изменение внутренней энергии: совершение работы

Н аука о тепловых явлениях называется термодинамика. Термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем.

При изучении основ термодинамики необходимо помнить следующие определения. Физическая система, состоящая из большого числа частиц - атомов или молекул, которые совершают тепловое движение и, взаимодействуя между собой, обмениваются энергиями, называется термодинамической системой .

Состояние термодинамической системы определяется макроскопическими параметрами , например удельным объемом, давлением, температурой.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Термодинамика рассматривает только равновесные состояния , т.е. состояния, в которых параметры термодинамической системы не меняются со временем.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом.

Термодинамическим процессом называется переход системы из начального состояния в конечное через последовательность промежуточных состояний.

Процессы бывают обратимыми и необратимыми.

Обратимым называется такой процесс, при котором возможен обратный переход системы из конечного состояния в начальное через те же промежуточные состояния, чтобы в окружающих телах не произошло никаких изменений. Обратимый процесс является физической абстракцией. Примером процесса, приближающегося к обратимому, является колебание тяжелого маятника на длинном подвесе. В этом случае кинетическая энергия практически полностью превращается в потенциальную, и наоборот. Колебания происходят долго без заметного уменьшения амплитуды ввиду малости сопротивления среды и сил трения.

Любой процесс, сопровождаемый трением или теплопередачей от нагретого тела к холодному, является необратимым . Примером необратимого процесса является расширение газа, даже идеального, в пустоту. Расширяясь, газ не преодолевает сопротивления среды, не совершает работы, но, для того чтобы вновь собрать все молекулы газа в прежний объем, т. е. привести газ в началь­ное состояние, необходимо затратить работу. Таким образом, все реальные процессы являются необратимыми.

Изменение внутренней энергии газа в процессе теплообмена и совершаемой работы.

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом .

Внутренняя энергияэто сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема (закон Джоуля).

Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:

Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия

U тела зависит наряду с температурой T также и от объема V : U = U (T , V ).

Таким образом, внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела . Она не зависит от того, каким путем было реализовано данное состояние.

Внутреннюю энергию тела можно изменить разными способами :

  1. Совершение механической работы.
  2. Теплообмен.


Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную).

Например, газ подвергается сжатию в цилиндре под поршнем площадью S. Поршень, сжимая газ, движется с некоторой скоростью v. Молекулы газа, беспорядочно двигаясь, ударяются о поршень. После упругого удара молекулы о поршень скорость молекулы возрастает, а значит возрастает и её кинетическая энергия, что приводит к увеличению внутренней энергии газа.

При сжатии газа его внутренняя энергия увеличивается за счет совершения поршнем механической работы. При расширении газа его внутренняя энергия уменьшается, превращаясь в механическую энергию поршня.

При сжатии газа внешние силы совершают над газом некоторую положительную работу A".

В то же время силы давления, действующие со стороны газа на поршень, совершают работу

A = –A".

Если объем газа изменился на малую величину ΔV , то газ совершает работу pS Δx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение.

При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна .

В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при ΔV i → 0:

Работа численно равна площади под графиком процесса на диаграмме (p , V ):

Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

Рисунок 2.
Три различных пути перехода из состояния (1) в состояние (2).
Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.

Процессы, изображенные на рис. 2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный.

Процессы которые можно проводить в обоих направлениях, называются обратимыми .

В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь. Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия.

Внутренняя энергия тела может изменяться не только в результате совершаемой работы, но и вследствие теплообмена .

При тепловом контакте тел внутренняя энергия одного из них может увеличиваться, а внутренняя энергия другого – уменьшаться. В этом случае говорят о тепловом потоке от одного тела к другому. Передача энергии от одного тела другому в форме тепла может происходить только при наличии разности температур между ними.

Приведем в соприкосновение два тела с раз­ными температурами. Пусть температура первого тела выше, чем второго. В результате обмена энергиями температура пер­вого тела уменьшается, а второго - увеличивается. В рассмат­риваемом примере кинетическая энергия хаотического движе­ния молекул первого тела переходит в кинетическую энергию хаотического движения молекул второго тела.

Тепловой поток всегда направлен от горячего тела к холодному .

Процесс передачи внутренней энергии без совершения меха­нической работы называется теплообменом.

Мерой энергии, полу­чаемой или отдаваемой телом в процессе теплообмена, служит физическая величина, называемая количеством теплоты .

Количеством теплоты Q , полученной телом, называют изменение внутренней энергии тела в результате теплообмена.

Количество теплоты Q является энергетической величиной. В СИ количество теплоты измеряется в единицах механической работы – джоулях (Дж).

До введения СИ количество теплоты выражали в калориях.

Калория - это количество теплоты, необходимое для нагревания 1 г дистиллиро­ванной воды на 1°С, от 19,5°С до 20,5°С.

Единица, в 1000 раз большая калории, называется килокалорией (1 ккал = 1000 кал). Соотношение между единицами: 1 кал =4,19 Дж.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются.

Чтобы нагреть тело массой m от температуры t 1 до температуры t 2 ему необходимо сообщить количество теплоты

Q = cm (t 2 t 1 )

Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

c = Q / (mΔT).

Во многих случаях удобно использовать молярную теплоемкость C :

C = M · c, где M – молярная масса вещества.

При передаче тепла от одного тела к другому всегда выполняется уравнение теплового баланса , по которому количество теплоты Q 1 , отданное первым телом, равно количеству теплоты Q 2 , полученному вторым телом.

Q 1 = Q 2

Теплота и работа являются не видом энергии, а формой ее передачи, они существуют лишь в процессе передачи энергии.

В реальных условиях оба способа передачи энергии системе в форме работы и форме теплоты обычно сопутствуют друг другу.

Первое начало термодинамики.

На рисунке изображены энергетические потоки между термодинамической системой и окружающими телами. в результате теплообмена и совершаемой работы:

Величина Q > 0, если тепловой поток нправлен в сторону термодинамической системы. Величина A > 0, если система совершает положительную работу над окружающими телами.

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, то есть изменяются ее макроскопические параметры (температура, давление, объем).

Процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Если между телами, составляющими замкнутую систему, действуют силы трения, то часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы –

№ 8, стр. 163

Определите Q - теплоту, необходимую для плавления свинца массой m=10 кг, находящегос при температуре плавления. Удельная теплота плавления свинца λ=25 кДж/кг. (ответ Q=250 кДж)

Основы термодинамики

Термодинамика изучает процессы и явления, происходящие в природе и технике, с точки зрения преобразования энергии, в том числе внутренней энергии тел.

Термодинамическая система – это совокупность тел, способных обмениваться энергией между собой и с другими системами. Замкнутая термодинамическая система не обменивается энергией с другими системами.

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией.

Внутренняя энергия - это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц.

Внутренняя энергия идеального газа складывается только из энергии движения молекул, так как взаимодействием молекул можно пренебречь. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 m/М RT. Внутренняя энергия одного моля одноатомного идеального газа:

Внутреннюю энергию можно изменить двумя способами: путем теплопередачи и путем совершения механической работы
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q). Принято считать, что Q > 0 , если тело получает энергию, и Q < 0 , если тело отдает свою энергию

При совершении механической работы должно происходить направленное перемещение тел под действием сил, например, перемещение поршня в цилиндре с газом. Если газ расширяется, то сила давления газа на поршень совершает положительную работу (A > 0 ) за счет внутренней энергии газа. Если внешние силы больше силы давления газа, то газ сжимается и работа газа будет отрицательной (A < 0 ), при этом внутренняя энергия увеличивается.

При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 - начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газа V

Первый закон термодинамики :

изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. ,



где - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. А*-работа самой системы, т.е.работа газа. Если система сама совершает работу и получает или отдает теплоту, то изменение ее внутренней энергии∆U = Q – A .

Применение первого закона термодинамики к изопроцессам
В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.
В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .
При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.
Адиабатным называют процесс , протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается,

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.



Равновесное и неравновесное состояние газа

Состояние система газа может быть равновесным или неравновесным. Равновесным считают состояние, при котором параметры газа (p , V , T ) остаются неизменными сколь угодно долго, пока какие-либо внешние воздействия не выведут систему из этого состояния (предполагается отсутствие потоков масс, теплоты и т. п.) .
Примером равновесного состояния может служить система из воды и пара, размещенная в закрытом термоизолированном сосуде.

Равновесной системой является также газ, находящийся в теплоизолированном цилиндре под поршнем, на который действует постоянная сила. Но газ, находящийся в цилиндре с подвижным поршнем, может перейти с некоторой скоростью из одного состояния в другое, например расшириться или сжаться.
При расширении газ, прилегающий непосредственно к поршню, находится под меньшим давлением, чем газ, находящийся в удалении от подвижного поршня; при сжатии, наоборот, его давление вблизи поршня выше.
Поэтому состояние газа в данном случае считается неравновесным (в его объеме параметры или параметр различается по величине) . По той же причине будет неравновесным газ, если к цилиндру подвести теплоту, поскольку температура слоев газа, расположенных рядом с нагреваемыми стенками цилиндра будет выше, чем температура удаленных от стенок слоев.

Каждое равновесное состояние системы можно изобразить в системе координат одной единственной точкой, характеризующей постоянство всех параметров.

Последовательность изменения термодинамического состояния системы называют термодинамическим процессом. Термодинамический процесс сопровождается в общем случае изменением всех или некоторых параметров системы газа.
Если изменение параметров газа во времени происходит очень медленно, то их разностью в разных частях системы во время процесса можно пренебречь. Такой переход системы из одного состояния в другое можно условно считать состоящим из непрерывной череды равновесных состояний, т. е. равновесным термодинамическим процессом.
Очевидно, что при переходе газа из одного состояния в другое с конечной скоростью равенство параметров газа соблюдаться не будет, и такой процесс не является равновесным.

Термодинамические процессы могут быть обратимыми и необратимыми .
Обратимым называют равновесный процесс, который протекает в прямом и обратном направлениях через один и тот же ряд равновесных состояний, не вызывая изменений в самой системе и телах, окружающих систему. Т. е. в результате обратимого процесса параметры системы газа первую половину времени изменяются по определенной закономерности, а вторую половину времени они возвращаются к начальному состоянию строго по обратному "пути".
Неравновесные процессы не соблюдают указанные выше условия, т. е. они необратимы.

Все реальные процессы, рассматриваемые теплотехникой, являются необратимыми, т. е. обратимый процесс является идеализированной моделью.



Работа газа

Газ, находящийся в сосуде, при повышенном давлении стремится расшириться, т. е. увеличить свой объем. Препятствовать этому стремлению могут внешние силы, воздействующие на газ. Очевидно, что если газу, несмотря на внешнее силовое противодействие, удается расшириться, то он совершает работу по преодолению этих внешних сил.
Аналогично при сжатии газа, заключенного в сосуде, приходится совершать работу по преодолению давления газа.

Попробуем определить описанную выше работу, выполняемую газом или внешними силами. Предположим, что некоторое количество газа находится в цилиндре под поршнем, скользящим без трения, и к которому приложена внешняя сила. В начальном состоянии система уравновешена – сила, действующая на поршень, уравновешивается давлением газа, и поршень остается неподвижным.

Пусть в результате подвода теплоты газ расширился так, что его давление осталось неизменным, а поршень при этом переместился вверх на некоторое расстояние Δh . При этом газ совершил работу, равную произведению силы на пройденный путь.
Зная давление газа p (которое в процессе остается неизменным) и площадь поршня S , можно определить силу, действующую на поршень со стороны газа: F = pS , а совершаемая газом работа будет равна

ΔA = FΔh = pSΔh .

Но произведение SΔh есть элементарное изменение объема ΔV , занимаемого газом. Таким образом, можно записать, что работа, совершаемая газом, зависит от изменения его объема:

ΔA = FΔh = pSΔh = pΔV .

Если изобразить графически в системе координат переход газа из одного состояния в другое в виде кривой линии, то каждая точка этой кривой будет соответствовать определенным параметрам p i V i .
Разбив эту кривую на элементарные участки, можно условно считать, что на каждом участке давление остается неизменным. Тогда работа газа на элементарном участке будет равна ΔA = pΔV .
Бесконечно сужая участки, мы перейдем к дифференциальному выражению: dA = pdV .

Из этого выражения следует, что когда газ расширяется (dV > 0 ), совершается работа по преодолению внешних сил, и она положительна. Если же газ сжимается внешними силами (dV < 0 ), работа газа отрицательна. В рассмотренной системе мы рассматривали давление, как неизменный параметр. Для того, чтобы определить полную работу газа при переменном давлении, изменяющемуся по функциональной зависимости p = f(V) , необходимо провести суммирование элементарных работ.
В этом случае:

A = Σ pdV или A = ∫ pdV в интервале от V 1 до V 2 .

Графически работа на диаграмме p , V изображается площадью поверхности между кривой p = f(V) и абсциссами V 1 и V 2 (см. рис. 1) .
Как можно понять из графика, работа газа по преодолению внешних сил зависит не только от начального и конечного состояний, но и от пути, по которому протекал процесс. Если кривая p = f(V) будет иметь другую форму (более выгнутая, пологая и т. п.) , то изменится и величина площади, заключенной между этой кривой и осью абсцисс.

В системе единиц СИ за единицу работы принят Джоуль (Дж) . Допускается применение внесистемной единицы – киловатт×час (кВт×ч) , который равен 3,6 МДж .

Внутренняя энергия газа

Каждая молекула реального газа обладает кинетической энергией, обусловленной непрерывным хаотичным (броуновским) движением, а также потенциальной энергией, которая обусловлена взаимодействию с соседними молекулами (силы гравитации и электромагнитного взаимодействия) .
Сумма кинетической и потенциальной энергии молекул называется внутренней энергией газа U . В общем случае внутренняя энергия газа зависит от его параметров – давления, объема и температуры, т. е. является функцией состояния.
При переходе системы из одного состояния в другое внутренняя энергия изменяется.

«Физика - 10 класс»

Тепловые явления можно описывать с помощью величин (макроскопических параметров), измеряемых такими приборами, как манометр и термометр. Эти приборы не реагируют на воздействие отдельных молекул. Теория тепловых процессов, в которой не учитывается молекулярное строение тел, называется термодинамикой . В термодинамике рассматриваются процессы с точки зрения превращения теплоты в другие виды энергии.

Что такое внутренняя энергия.
Какие способы изменения внутренней энергии вы знаете?

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В её основе лежит понятие внутренняя энергия . Само название «внутренняя» предполагает рассмотрение системы как ансамбля движущихся и взаимодействующих молекул. Остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.


Термодинамика и статистическая механика.


Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика.

Термодинамика возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание. Тогда же было доказано, что наряду с механической энергией макроскопические тела обладают ещё и энергией, заключённой внутри самих тел.

Сейчас в науке и технике при изучении тепловых явлений используется как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой

Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

Термодинамической системой называют совокупность взаимодействующих тел, обменивающихся энергией и веществом.


Внутренняя энергия в молекулярно-кинетической теории.


Основным понятием в термодинамике является понятие внутренней энергии.

Внутренняя энергия тела (системы) - это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия.

Механическая энергия тела (системы) как целого не входит во внутреннюю энергию. Например, внутренняя энергия газов в двух одинаковых сосудах при равных условиях одинакова независимо от движения сосудов и их расположения относительно друг друга.

Вычислить внутреннюю энергию тела (или её изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или её изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.


Внутренняя энергия идеального одноатомного газа.


Вычислим внутреннюю энергию идеального одноатомного газа.

Согласно модели молекулы идеального газа не взаимодействуют друг с другом, следовательно, потенциальная энергия их взаимодействия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой т нужно умножить среднюю кинетическую энергию одного атома на число атомов. Учитывая, что kN A = R, получим формулу для внутренней энергии идеального газа:

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

Она не зависит от объёма и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа

т. е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и Т другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но ещё и вращаются и колеблются относительно своих положений равновесия. Внутренняя энергия таких газов равна сумме энергий поступательного, вращательного и колебательного движений молекул. Следовательно, внутренняя энергия многоатомного газа больше энергии одноатомного газа при той же температуре.


Зависимость внутренней энергии от макроскопических параметров.


Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры.

У реальных газов, жидкостей и твёрдых тел средняя потенциальная энергия взаимодействия молекул не равна нулю . Правда, для газов она много меньше средней кинетической энергии молекул, но для твёрдых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объёма вещества, так как при изменении объёма меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит наряду с температурой T и от объёма V.

Можно ли утверждать, что внутренняя энергия реального газа зависит от давления, основываясь на том, что давление можно выразить через температуру и объём газа.

Значения макроскопических параметров (температуры Т объёма V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объёмом.

Для вычисления внутренней энергии идеального одноатомного газа массой нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что , получим значение внутренней энергии идеального газа:

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия равна сумме поступательного и вращательного движения молекул.

Для двухатомного газа:

Для многоатомного газа:

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Для газов она много меньше средней кинетической энергии молекул, но для твердых тел и жидкостей она сравнима с ней. Средняя потенциальная энергия взаимодействия молекул зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия в термодинамике в общем случае наряду с температурой зависит и от объема.

Количество теплоты:

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: .

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:

Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

Вычислим работу газа при расширении. Газ действует на поршень с силой , где - давление газа, а - площадь поверхности поршня. При расширении газа поршень смещается в направлении силы на малое расстояние . Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

Где - изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком , так как сила , действующая на газ, противоположна силе , с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия.

Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что , первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Применение первого закона термодинамики к изопроцессам:

При изохорном процессе объем газа не меняется и поэтому работа газа равна нулю. Изменение внутренней энергии равно количеству переданной теплоты:

При изотермическом процессе внутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:

При изобарном процессе передаваемое газу количество теплоты идет на изменение его внутренней энергии и на совершение работы при постоянном давлении.

Адиабатный процесс:

Адиабатный процесс – процесс в теплоизолированной системе. Следовательно, изменение внутренней энергии при адиабатном процессе происходит только за счет совершении работы:

Так как работа внешних сил при сжатии положительна, внутренняя энергия газа при адиабатном сжатии увеличивается, а его температура повышается.

При адиабатном расширении газ совершает работу за счет уменьшения своей внутренней энергии, поэтому температура газа при адиабатном расширении понижается.

Принцип действия тепловых двигателей:

Тепловым двигателем называется двигатель, который производит механическую работу за счет энергии, выделившейся при сгорании топлива. Некоторые виды тепловых двигателей:

Паровая машина;

Паровая турбина;

Двигатель внутреннего сгорания;

Реактивный двигатель.

Физические основы работы всех тепловых двигателей одинаковы. Тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела, холодильника.

Процесс работы теплового двигателя: Рабочее тело приводят в контакт с нагревателем ( - высокая), поэтому рабочее тело получает от нагревателя . За счет этого количества теплоты рабочее тело совершает механическую работу. Затем рабочее тело приводят в контакт с холодильником ( - низкая), поэтому рабочее тело отдает тепло холодильнику. Таким образом возвращается в исходное состояние. Теперь рабочее тело приводят в контакт с нагревателем и все происходит сначала. Следовательно, тепловая машина – периодического действия, то есть в этой машине тело совершает замкнутый процесс – цикл. За каждый цикл рабочее тело совершает работу .

КПД принято выражать в процентах:

КПД теплового двигателя и его максимальное значение:

В начале XIX века французский инженер Сади Карно исследовал пути повышения КПД тепловых двигателей. Он придумал цикл, который должен совершать идеальный газ в некоторой тепловой машине, такой, что при этом получается максимально возможный КПД. Цикл Карно состоит из двух изотерм и двух адиабат.

Идеальный газ приводят в контакт с нагревателем и предоставляют ему возможность расширяться изотермически, то есть при температуре нагревателя. Когда расширившийся газ перейдет в состояние 2, его теплоизолируют от нагревателя и дают ему возможность расширяться адиабатически, то есть газ совершает работу за счет убыли его внутренней энергии. Расширяясь адиабатически газ охлаждается до тех пор, пока его температура не будет равна температуре холодильника (состояние 3). Теперь газ приводят в контакт с холодильником сжимают изотермически. Газ отдает холодильнику . Газ переходит в состояние 4. Затем газ теплоизолируют от холодильника и сжимают адиабатически. При этом температура газа увеличивается и достигает температуры нагревателя. Процесс повторяется сначала.

(*) - формула для расчета КПД идеальной тепловой машины, работающей по циклу Карно с идеальным газом.

Карно показал, что КПД любой другой тепловой машины (то есть с другим рабочим телом или работающей по другому циклу) будет меньше, чем КПД цикла Карно. На практике не используют машины, работающие по циклу Карно, но формула (*) позволяет определить максимальный КПД при заданных температурах нагревателя и холодильника.

Очевидно, что для увеличения КПД нужно понижать температуру холодильника и повышать температуру нагревателя. Понижать температуру холодильника искусственно невыгодно, так как это требует дополнительных затрат энергии. Повышать температуру нагревателя можно тоже до определенного предела, так как различные материалы обладают различной жаропрочностью при высоких температурах. Однако формула Карно показала, что существуют неиспользованные резервы повышения КПД, так как практический КПД очень сильно отличается от КПД цикла Карно.

Тепловые двигатели и охрана природы:


Испарение и конденсация, насыщенные и ненасыщенные пары:

Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с остальными молекулами. Испарение – процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул. Испарение сопровождается охлаждением жидкости, так как жидкость покидают молекулы, имеющие большую кинетическую энергию, и внутренняя энергия жидкости понижается. Вылетевшие молекулы начинают беспорядочно двигаться в тепловом движении газа; они могут или навсегда удалиться от поверхности жидкости, или снова вернуться в жидкость. Такой процесс называется конденсацией.

Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала процесса испарения концентрация вещества в газообразном состоянии достигает такого значения, при котором число молекул, возвращающихся в жидкость в единицу времени, становится равным числу молекул, покидающих поверхность жидкости за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества.

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называется насыщенным паром . Пар, находящийся при давлении ниже давления насыщенного пара называется ненасыщенным .

При сжатии насыщенного пара концентрация молекул пара увеличивается, равновесие между процессами испарения и конденсации нарушается и часть пара превращается в жидкость. При расширении насыщенного пара концентрация его молекул уменьшается и часть жидкости превращается в пар. Таким образом, концентрация насыщенного пара остается постоянной независимо от объема. Так как давление газа пропорционально концентрации и температуре (), давление насыщенного пара при постоянной температуре не зависит от объема.

Интенсивность процесса испарения увеличивается с возрастанием температуры жидкости. Поэтому динамическое равновесие между испарением и конденсацией при повышении температуры устанавливается при больших концентрациях молекул газа.

Давление идеального газа при постоянной концентрации молекул возрастает прямо пропорционально абсолютной температуре. Так как в насыщенном паре при возрастании температуры концентрация молекул увеличивается, давление насыщенного пара с повышением температуры возрастает быстрее, чем давление идеального газа с постоянной концентрацией молекул. То есть давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул пара.

Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара.

Зависимость температуры кипения жидкости от давления:

При увеличении температуры интенсивность испарения жидкости увеличивается, и при некоторой температуре жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной .

В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают на поверхность.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения.

У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости , так как при меньших температурах давление насыщенного пара становится равным атмосферному.

При увеличении температуры жидкости увеличивается давление насыщенного пара и одновременно растет его плотность. Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие расширения жидкости при нагревании.

Если на одном рисунке начертить кривые зависимости плотности жидкости и плотности ее насыщенного пара от температуры, то для жидкости кривая пойдет вниз, а для пара – вверх.

При некоторой температуре обе кривые сливаются, то есть плотность жидкости становится равной плотности пара.

Критическая температура – температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром.

При температурах, больших критической, вещество не превращается в жидкость ни при каких давлениях.

Влажность воздуха:

Атмосферный воздух представляет собой смесь различных газов и водяного пара. Каждый из газов вносит свой вклад в суммарное давление, производимое воздухом на находящиеся в нем тела.

Давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали, называют парциальным давлением водяного пара .

Относительной влажностью воздуха называют отношение парциального давления водяного пара, содержащегося в воздухе при данной температуре, к давлению насыщенного пара при той же температуре, выраженное в процентах:

Так как давление насыщенного пара тем меньше, чем меньше температура, то при охлаждении воздуха находящийся в нем водяной пар при некоторой температуре становится насыщенным. Температура , при которой находящийся в воздухе водяной пар становится насыщенным, называется точкой росы .

По точке росы можно найти давление водяного пара в воздухе. Она равно давлению насыщенного пара при температуре, равной точке росы. По значениям давления пара в воздухе и давления насыщенного пара при данной температуре можно определить относительную влажность воздуха.


Кристаллические и аморфные тела:

­Аморфными называются тела, физические свойства которых одинаковы по всем направлениям. Аморфные тела являются изотропными – у них нет строгого порядка в расположении атомов. Примерами аморфных тел могут служить куски затвердевшей смолы, янтарь, стекло.

Твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру, называют кристаллами . Физические свойства кристаллических тел неодинаковы в различных направлениях, но совпадают в параллельных направлениях. Это свойство кристаллов называется анизотропностью .

Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям.

Кристаллические тела делятся на монокристаллы и поликристаллы . Монокристаллы иногда обладают геометрически правильной формой, но главный признак монокристалла – периодически повторяющаяся внутренняя структура во всем его объеме. Поликристаллическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов – кристаллитов. Каждый маленький монокристалл поликристаллического тела анизотропен, но поликристаллическое тело изотропно.

Механические свойства твердых тел:

Рассмотрим механические свойства твердого тела на примере деформации растяжения. В любом сечении деформированного тела действуют силы упругости, препятствующие разрыву этого тела на части. Механическим напряжением называют отношение модуля силы упругости к площади поперечного сечения тела:

При малых деформациях напряжение прямо пропорционально относительному удлинению (участок ОА). Эта зависимость называется законом Гука:

Где - модуль Юнга.

Обозначим , тогда

Закон Гука выполняется только при небольших деформациях, а следовательно, при напряжениях, не превосходящих некоторого предела. Максимальное напряжение , при котором еще выполняется закон Гука называют пределом пропорциональности .

Если увеличивать нагрузку, то деформация становится нелинейной, напряжение перестает быть прямо пропорционально относительному удлинению. Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации(относительная остаточная деформация не превышает 0,1%), называют пределом упругости .

Если внешняя нагрузка такова, что напряжение в материале превышает предел упругости, то после снятия нагрузки тело остается деформированным. При некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки. Это явление называется текучестью материала (участок CD).

Далее с увеличением деформации кривая напряжений начинает немного возрастать и достигает максимума в точке Е. Затем напряжение резко спадает и тело разрушается. Разрыв происходит после того, как напряжение достигает максимального значения , называемого пределом прочности .

Упругие деформации:

При упругих деформациях размеры и форма тела восстанавливаются при снятии нагрузки.